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Abstract
Electron paramagnetic resonance spectra of Yb3+ ions in the optically bistable
compound Yb:CsCdBr3 are presented. The features observed are assigned to
the symmetrically coupled pair complexes of the type Yb3+–VCd–Yb3+ (VCd

being a cadmium vacancy) whose axis is parallel to the crystallographic c-axis.
There are no asymmetric pairs of the type Yb3+–Yb3+–VCd. It is shown that
simulation of the spectra is possible only if an exchange interaction is taken
into account in the spin Hamiltonian. The value of J = −0.0016 cm−1 shows
that the exchange interaction is antiferromagnetic but extremely weak. It is also
found that there is a significant relaxation (about 12%) of Yb3+ ions toward the
Cd vacancy. From the experimental g-tensor values, it is established that the
lower ground state of Yb3+ ions in CsCdBr3 is mainly composed of 4fφ (63%)
and 4fδ (32%) ytterbium orbitals. It has been previously proposed that optical
bistability is due to asymmetric pairs of the type Yb3+–Yb3+–VCd. On the basis
of the present work, this now appears unlikely.

1. Introduction

The presence of two stable transmission or emission intensity values for a single input intensity,
outside an optical cavity, a phenomenon known as intrinsic optical bistability (IOB), was
demonstrated for the first time in 1994 in a rare-earth dimer compound Cs3Y2Br9:10% Yb3+

by Hehlen et al [1]. This experimental observation of all-optical switching originating from
rare-earth-ion pairs was later extended to the isostructural systems Cs3Lu2Br9:10% Yb3+ and
Cs3Yb2Br9 [2] and more recently to a quasi-one-dimensional compound CsCdBr3:1% Yb3+

[3]. Studies on these materials suggest that non-linearities mediated by local field effects
may cause hysteresis of near-infrared and cooperative upconversion luminescence, with the
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possibility of optical switching between the two states. These non-linearities arise from strong
ion–ion coupling within well-isolated dimers. Because of the potential applications of IOB in
communications and optical computing, a precise knowledge of ion–ion interactions in such
pairs is of fundamental interest for understanding the IOB mechanism.

CsCdBr3 adopts a hexagonal structure with space group P63/mmc (D4
6h), and belongs to

the AMX3 series of host materials where A is a monovalent metal, M a divalent metal and X a
halide. The basic lattice is built of linear arrays of face-sharing (CdBr6)4− octahedra parallel
to the crystallographic c-axis, the charge being balanced by Cs+ ions occupying sites between
the chains. The point symmetries of the cation sites are D3h for Cs+ and D3d for Cd2+. The
distance between the Cd2+ ions along a chain is much smaller than the separation between
the chains, which gives this structure an essentially one-dimensional character. In addition,
the most prominent feature of these crystals is that when rare-earth (RE3+) ions such as Yb3+

are incorporated at the Cd2+ lattice position, they appear exclusively as ion pair centres, even
at low dopant concentration. This tendency of RE3+ ions to form pairs is the consequence
of the charge compensation. The main RE centre is a symmetric in-chain pair complex of
the type [RE3+–VCd–RE3+] and was identified by McPherson and Henling by means of EPR
experiments on Gd3+ [4]. Each individual RE3+ ion of the pair has C3v site symmetry. The
distance R between the ions attracted by the Cd2+ vacancy reduced from the lattice constant
value c = 6.722 Å to around 6.0 Å. A minority Cr3+–(Cs+ vacancy) complex of lower symmetry
(CS) was also identified by means of EPR in a chromium-doped compound [5]. Subsequent
laser spectroscopic studies on CsCdBr3 doped with Nd3+ [6], Er3+[7] and Pr3+[8] suggested
the presence of an asymmetric in-chain [RE3+–RE3+–VCd] complex in small quantities. In
this complex, the two RE3+ ions have non-equivalent crystal fields and the distance R between
them is around 3.4 Å. The predominance of these pair centres, in which the RE3+ ions are
separated by a small distance, makes CsCdBr3 an ideal host for studying energy-transfer
processes, upconversion and cross-relaxation mechanisms for application in laser systems,
and also detailed RE3+–RE3+ pair interactions in well-defined and relatively simple crystalline
environments. Although the optical properties of CsCdBr3 activated by different RE3+ ions
have been widely studied [6–13], the identification of optical lines with specific impurity
centres is still of more or less hypothetical character, and the cause of there being more 4f–4f
transitions than expected in the absorption or emission spectra is still not clear [3].

In a recent comprehensive paper, Malkin et al [14] reported EPR and optical spectra
of Yb3+–VCd–Yb3+ centres in CsCdBr3, and explained the crystal-field energies in terms of
mixing of the ground-state configuration with ligand-to-metal charge-transfer configurations.
These authors interpreted the EPR spectra of Yb3+ pairs in terms of a spin Hamiltonian in
which the ion–ion interaction is of the magnetic dipole–dipole type. The isotropic interaction
J was not taken into consideration. This reasonable assumption is supported by the fact
that there is no evidence of such interaction in the optical spectra [6–13], which implies
J � 1 cm−1. However, from the examination of the EPR spectra reported in reference [14],
it appears evident that the calculated hyperfine patterns of Yb3+ pairs are different from the
experimental ones. A possible explanation for this discrepancy could be the presence of an
isotropic exchange interaction, which was not taken into account in the spin Hamiltonian.
Recently, by using EPR and high-resolution optical spectroscopy, we have demonstrated that
ground-state ferromagnetic exchange interactions are responsible for the extra optical lines for
neodymium-doped LiYF4 and YVO4 laser crystals [15]. In the case of ytterbium in CsCdBr3,
the separation between two adjacent hyperfine transitions for a given value m1 of the nuclear
spin component of one ion (171Yb or 173Yb) of the pair should be of the order of 4D − 2J ,
where D is the dipole–dipole interaction. If J is not too small compared to D, this correction
should modify the shape of the hyperfine pattern for pairs and could explain the discrepancy
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between experimental and calculated spectra in reference [14]. In the present work we report a
detailed EPR study of Yb3+ pairs in CsCdBr3, with a view to identifying the respective effects
of dipole–dipole and exchange interactions

2. Experimental procedure

CsCdBr3 single crystals of 1.3% ytterbium concentration were grown by the Bridgman method.
EPR spectra were recorded on a Bruker ESP 300e spectrometer equipped with a TE 102
rectangular cavity and a variable-temperature accessory from Oxford Instruments. The crystal
was mounted on a small Perspex sample holder to allow its orientation to be varied with
respect to the magnetic field. The microwave frequency was measured with a Systron Donner
frequency counter. Typical measurements were made at 7 K with a microwave power of 20 mW
and a frequency of approximately 9.5 GHz.

3. Results

The principal EPR signals, observed in the range 210–320 mT, are shown in figure 1 for the
external magnetic field B both parallel and perpendicular to the crystallographic c-axis. In
addition, weaker EPR signals are observed at half-fields (∼130 mT) when B is away from
the symmetry axis. Figure 2(a) shows such a half-field resonance (HFR) spectrum at θ = 45◦

where θ is the angle between the direction of the magnetic field B and the c-axis. The angular
dependence of the principal as well as HFR spectra in the a–c (or b–c) and a–b crystallographic
planes shows that the resonance lines have axial symmetry about the trigonal c-axis. The
complexity of the spectra is due to the fact that ytterbium has one even isotope of natural
abundance 69% and two odd isotopes which give rise to hyperfine structures, (171Yb, I = 1/2,
14.4% and 173Yb, I = 5/2, 16.6%). All of the spectral features can be accurately described by
assigning the resonance lines to the symmetric pairs of the type evenYb–VCd–evenYb, 171Yb–
VCd–evenYb and 173Yb–VCd–evenYb, with Yb3+ ions at identical crystallographic sites [14].

The Hamiltonian for a pair of identical interacting ions 1 and 2 can be written as

H = H1 +H2 + V (1)

where H1 and H2 are the individual ion Hamiltonians and V represents the pairing effect.
H1 and H2 for single Yb3+ ions at Cd2+ sites of the host include the free-ion Hamiltonian
H0 and the crystal-field Hamiltonian Hcf . The component H0 contains electron–electron and
spin–orbit interaction terms and gives the two 2S+1LJ multiplets of Yb3+, the ground state
2F7/2 and the only excited state 2F5/2, separated by around 10 000 cm−1. The crystal-field
term Hcf lifts the 2J + 1 degeneracy of the 2S+1LJ states, making them doubly degenerate
states, referred to as Kramers doublets (KDs). The residual degeneracy of a KD can only be
removed by an external magnetic field. At liquid helium temperature, only the lowest doublet
is populated and, therefore, we can attribute an effective spin S = 1/2 to it. The EPR spectrum
of an isolated ion can thus be treated by an effective spin Hamiltonian consisting of electronic
Zeeman terms and the additional nuclear hyperfine terms for odd isotopes [14].

The pairing term V can be written as the interaction between two identical effective spins
S1 and S2 of the lowest ground-state Kramers doublet of the two Yb3+ ions:

Veff = −2J �S1 · �S2 +
β2

R3

[
−2g2

‖(S1zS2z) +
g2

⊥
2
(S1+S2− + S1−S2+)

]
. (2)

The first and the second terms in this expression are the isotropic Heisenberg exchange and
anisotropic dipolar contributions respectively, J is the scalar exchange interaction andR is the
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Figure 1. Experimental and simulated EPR spectra of 1.3% Yb3+:CsCdBr3 at 7 K with (a) B ‖ c
and (b) B ⊥ c. The stars indicate very weak EPR lines due to non-axial Yb3+ centres.

RE–RE distance. The z-axis (RE–RE axis) is parallel to the crystal symmetry axis. Two-centre
or direct exchange and multicentre or superexchange processes involving the ligands can both
contribute to J [16]. The isotropic interaction produces a splitting of magnitude J between
the singlet spin state and the centre of gravity of the triplet spin states. The anisotropic term
produces splittings within the triplet levels without altering the centre of gravity. The pure
magnetic dipole–dipole expression has been used for the anisotropic dipolar interaction in
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Figure 2. (a) Experimental and simulated half-field resonance (HFR) spectra for B making an
angle of θ = 45◦ with the c-axis. The stars indicate very weak EPR lines due to non-axial Yb3+

centres. (b) The measured (�) and calculated (broken curve) relative intensity of the HFR line due
to even–even Yb pairs as a function of θ .

equation (2) as in reference [14] because the distance R between the two Yb3+ ions of a pair is
relatively large compared to the ion size, so the multipole expansion of the magnetic spin–spin
interaction should converge sufficiently to give a leading term of the magnetic dipole–dipole
type. It should be mentioned that the exchange interactions between paramagnetic ions with
unquenched orbital momentum, which is the case with rare-earth ions, are generally considered
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to be rather complex [17] and to deviate from the well-known Heisenberg form. Various other
terms like antisymmetric exchange, anisotropic bilinear exchange and biquadratic exchange
involving other mechanisms of spin–spin interaction such as electric multipole interactions and
virtual phonon exchange may also contribute to the interaction term Veff [17, 18]. However,
we have recently shown that the high-resolution optical spectra of Nd3+ pairs in Nd:YVO4 and
Nd:YLiF4 can be accurately interpreted by considering only isotropic Heisenberg exchange
interactions [15]. In this work also, the use of expression (2) in its present form will be justified
a posteriori in relation to the experimental results.

The total effective spin Hamiltonian appropriate for describing the EPR spectra of a pair
of interacting even–even isotopes of Yb can thus be written as

Heff = g‖βBz(S1z + S2z) + g⊥β
[
Bx(S1x + S2x) + By(S1y + S2y)

]
+

[
β2

R3
(−2g2

‖)− 2J

]
(S1zS2z) +

1

2

[
β2

R3
(g2

⊥)− 2J

]
(S1+S2− + S1−S2+). (3)

When the external magnetic field B is at an angle θ with the symmetry axis, we can write
Bz = B cos θ ,Bx = B sin θ andBy = 0. The anisotropy of theg-tensor means that the electron
spin will not, in general, be parallel to B. Choosing a new coordinate system (x ′, y ′, z′) where
each electronic spin is diagonal along z′ and the 0z′-axis makes an angle φ with 0z, the spin
Hamiltonian in equation (3) transforms to

Heff = g(θ)B(S1z′ + S2z′) + (4D1 − 2J )(S1z′S2z′) + (D2 − J )(S1+′S2−′ + S1−′S2+′)

+ D3(S1+′S2+′ + S1−′S2−′) +D4(S1+′S2z′ + S1−′S2z′ + S1z′S2+′ + S1z′S2−′) (4)

where g‖ cos θ = g cosφ, g⊥ sin θ = g sin φ and g2(θ) = g2
‖ cos2 θ + g2

⊥ sin2 θ in axial
symmetry. The dipolar terms Di (i = 1 to 4) in equation (4) are defined as

D1 = β2

4R3

[
(g4

⊥ sin2 θ − 2g4
‖ cos2 θ)/g2(θ)

]
D2 = β2

4R3

[{
2g2

‖(1 − 2 sin2 θ) + g2
⊥ sin2 θ

}
g2

⊥/g
2(θ)

]
D3 = − β2

4R3

[
g2

⊥(g
2
⊥ + 2g2

‖) sin2 θ/g2(θ)
]

D4 = β2

4R3

[
(g2

⊥ + 2g2
‖)g‖g⊥ sin θ cos θ/g2(θ)

]
.

(5)

The basis states of the form |± 1
2 ,± 1

2 〉 = |MS1〉|MS2〉 are used to solve this Hamiltonian,
MSi = ± 1

2 being the z-projection of the effective spin S on ion i. From the eigenstates of
Heff , we expect two  MS = ±1 transitions at magnetic fields

B± = B0

[
1 ± (−2D1 +D2)

gβB0
− (2D2

4 + 1
2D

2
3)

(gβB0)2

]
(6)

where B0 is the centre resonance field. The corresponding relative intensities, calculated up
to first order in the perturbation, are

1

2

(
1 ± D3

gβB0

)
. (7)

A single  MS = ±2 forbidden half-field transition is also expected at

BF = B0

[
1

2
− (4D2

4 +D2
3)

2(gβB0)2

]
(8)

with relative intensity 4D2
4/(gβB0)

2 up to second order in the perturbation.
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Figure 3 shows the observed angular variation of the low-field (B−) and high-field (B+)
allowed  MS = ±1 transitions due to interacting even–even isotopes of Yb in the a–c (or
b–c) crystallographic plane. The two transitions cross over at an angle θ between 50◦ and 55◦.
The measured relative intensity of the corresponding HFR line due to even–even Yb pairs as a
function of θ is shown in figure 2(b). Since the intensity depends on the square of the dipolar
parameterD4, i.e. on sin2 2θ (see equation (5)), it is greatest when the magnetic field is at 45◦

to the z-axis and at its minimum along the principal axes.

Figure 3. Experimental (�) and calculated (solid curves) angular variations of the two allowed
 MS = ±1 transitions due to interacting even–even Yb pairs in the a–c (or b–c) crystallographic
plane.

When ion 1 has a nuclear spin I1 (for example for the pairs of the type 171Yb–VCd–evenYb
or 173Yb–VCd–evenYb), the hyperfine terms A‖(S1zI1z) + 1

2A⊥(S1+I1− + S1−I1+) are included
in the effective spin Hamiltonian of equation (3). As before, we again choose a new coordinate
system (x ′′, y ′′, z′′) where the nuclear spin is diagonal along z′′ and 0z′′ and makes an angle ψ
with 0z. The following hyperfine terms are thus added to equation (4):

K(θ)S1z′I1z′′ +
A‖A⊥
K(θ)

S1x ′I1x ′′ + A⊥S1y ′I1y ′′ + R(θ)S1x ′I1z′′

where

A‖g‖ cos θ = Kg cosψ A⊥g⊥ sin θ = Kg sinψ

K2(θ)g2(θ) = A2
‖g

2
‖ cos2 θ + A2

⊥g
2
⊥ sin2 θ

R(θ) = (A2
⊥ − A2

‖)g‖g⊥ sin θ cos θ/K(θ)g2(θ).

For a particular m1 = 〈Iz〉 state, the  MS = ±1 transitions can now be shown to occur at the
fields (the theoretical treatment is similar to that outlined in [18])

B1,2 = B0

[
1 ∓ 2D′

1

gβB0
− ( 1

2Km1 ∓ ϕ)
gβB0

− (2D2
4 + 1

2D
2
3)

(gβB0)2
−

1
2R

2m2
1(b

2
1 + a2

2)

(gβB0)2

∓ 2D4Rm1(1 + ab)

(gβB0)2
− A2

⊥
4

(
A2

⊥ +K2

K2

)[
I (I + 1)−m2

1

]
(b2

1 + a2
2)

(gβB0)2

]
(9a)

B3,4 = B0

[
1 ∓ 2D′

1

gβB0
− ( 1

2Km1 ± ϕ)
gβB0

− (2D2
4 + 1

2D
2
3)

(gβB0)2
−

1
2R

2m2
1(a

2
3 + b2

4)

(gβB0)2

∓ 2D4Rm1(1 − ab)
(gβB0)2

− A2
⊥

4

(
A2

⊥ +K2

K2

)
[I (I + 1)−m2

1](a2
3 + b2

4)

(gβB0)2

]
. (9b)
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Their relative intensities calculated up to second order are respectively

1

4
(a + b)2

(
1 ± D3

gβB0

)
(10a)

and
1

4
(a − b)2

(
1 ∓ D3

gβB0

)
. (10b)

The parameters D′
1 and D′

2 are defined as D′
1 = D1 − J/2 and D′

2 = D2 − J and the other
parameters ϕ, a and b in (9) and (10) are given as

ϕ = (D′2
2 + 1

4K
2m2

1)
1/2

a = D′
2

[D′2
2 + (ϕ − 1

2Km1)2]1/2
= D′

2

f1

and

b = ϕ − 1
2Km1

f1
.

We expect 4(2I + 1) allowed  MS = ±1 transitions when one of the ytterbium isotopes of
a pair has a nuclear magnetic moment. Thus for 171Yb–VCd–evenYb pairs there will be eight
allowed transitions while for 173Yb–VCd–evenYb pairs there will be 24 allowed transitions.

The forbidden  MS = ±2 transitions are now expected at the magnetic fields

BF (m1) = B0

[
1

2
− Km1

2gβB0
− (4D2

4 +D2
3)

2(gβB0)2
− R2m2

1

(2gβB0)2

− A2
⊥

4

(
A2

⊥ +K2

K2

)[
I (I + 1)−m2

1

]
(gβB0)2

]
(11)

with relative intensity 4D2
4/(gβB0)

2.
The spin-Hamiltonian parameters determined by fitting the experimental spectra with their

computer simulations are reported in table 1. Simulated spectra, shown in figure 1, are obtained
by assuming Gaussian line-shape functions. The line positions are calculated from equations
(6) and (9) and their relative intensities from equations (7) and (10). The agreement is excellent,
with deviations of around 0.4% compared to the overall splittings. The good quality of this
fitting shows that it is not necessary to take into account pairs of the type 173Yb–VCd–173Yb,
171Yb–VCd–171Yb and 171Yb–VCd– 173Yb, with natural abundances 2%, 2.8% and 4.8%,
respectively. The number of hyperfine lines is so large in these cases that their amplitudes
are completely negligible. The positions and intensities of the most important lines are also
depicted as a stick diagram in figure 1. In the case of 173Yb–VCd–evenYb pairs, eight very weak
resonance lines in the field range 252–284 mT are not shown in the stick diagram of figure 1(a)
for B ‖ c. For B ⊥ c, four resonance lines in the case of 171Yb–VCd–evenYb pairs and twelve
resonance lines in the case of 173Yb–VCd–evenYb pairs, of varying intensities, all coinciding

Table 1. Spin-Hamiltonian parameters of the Yb3+–VCd–Yb3+ complexes in 1.3% Yb:CdCdBr3
at 7 K.

A‖ (10−4 cm−1) A⊥ (10−4 cm−1)

|g‖| |g⊥| 171Yb 173Yb 171Yb 173Yb J (10−4 cm−1)

2.503 ± 0.001 2.619 ± 0.001 666 ± 5 182 ± 0.5 708 ± 4 193.2 ± 0.5 −16 ± 2
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or nearly coinciding with the two main central lines due to evenYb–VCd–evenYb pairs, are not
shown in the stick diagram of figure 1(b). It is interesting to note that the hyperfine patterns of
the two pairs 171Yb–VCd–evenYb and 173Yb–VCd–evenYb have been fitted independently. The
very good agreement of the ratio (171A‖/173A‖) = (171A⊥/173A⊥) = 3.66 with the theoretical
value 3.63 of the ratio of gN -values of the two isotopes provides a convincing argument for
the validity of the simulation.

Besides the main EPR signals discussed so far, several very weak EPR lines are also
observed (a few of these are indicated by stars in figures 1 and 2(a)). From their angular
dependence which varies when B rotates in the a–b plane, it is evident that these weaker lines
could be due to non-axial Yb3+ centres such as Yb3+–(Cs+ vacancy) with CS symmetry. Due
to the fact that such additional lines are also present in the half-field region (see figure 2(a)),
it seems likely that these centres could also be non-axial Yb3+–VCd–Yb3+ pairs with a defect
in a neighbouring caesium site.

4. Discussion

4.1. Interionic separation and exchange interaction J

The excellent quality of the simulations (figures 1 and 2(b)) and the good agreement between the
calculated and experimental angular variations for the line positions of the allowed MS = ±1
transitions (figure 3) and for the intensity of the forbidden MS = ±2 transitions (figure 2(b))
justify the use of Hamiltonian (3) for the description of Yb3+ pairs.

Let us first consider the magnetic dipolar spin–spin interaction, responsible for the sep-
aration 2(−2D1 + D2) between the two lines due to dominant pairs of even isotopes (see
equation (6)). From the experimental weakly anisotropic g-values, listed in table 1, and using
expressions forD1 andD2 from equation (5), the calculated magic angle (the angle θ at which
dipolar splitting vanishes) comes out to be 53.63◦, in close agreement with the experimental
observation (figure 3) and the value 54.44◦ for the pure point dipole–dipole interaction between
the two electronic spins with isotropic g-values. This provides confirmation that the use of a
pure dipole–dipole expression in equation (3) is justified. Further, it follows from equation (5)
that the dipolar splitting 2(−2D1 +D2) is simply β2(2g2

‖ + g2
⊥)/R

3 for B ‖ c and reduces to
β2(2g2

‖ + g2
⊥)/2R

3 for B ⊥ c. Thus, a reasonably accurate estimate of the distanceR between
the two Yb3+ ions in a pair can be made from the measured splittings. An interionic separation
of 5.88 Å is calculated in this way. This distance is slightly smaller than that measured by
Malkin et al [14]. It is, however, much smaller than the distance of 6.72 Å between two Cd2+

ions in second-neighbour positions in the host lattice. This indicates that there is a significant
relaxation (about 12%) of Yb3+ ions towards the Cd2+ vacancy along the Yb3+–VCd–Yb3+ axis
(c-axis).

The other spin–spin interaction in Hamiltonian (3) is the isotropic exchange interaction
J . Four allowed transitions at magnetic fields given by equation (9) are observed for each
m1 = 〈Iz〉 state, for pairs of the type 171Yb–VCd–evenYb and 173Yb–VCd–evenYb. The resonance
lines corresponding to the subscripts 2 and 3 in equation (9) are observed at low fields while
those corresponding to subscripts 1 and 4 appear at high fields. The energy separation
between the adjacent transitions at B2 and B3 or B1 and B4, for a particular value of m1,
is 4D′

1 = 4D1 − 2J . Further, the intensities of the allowed transitions for such pairs also
depend on D′

2 and thus on J . As the dipolar parameters D1 and D2 can be calculated from
the g-values and the interionic distance R, the only unknown is the exchange interaction
parameter J . Because of the large number of lines in the pair spectra of dissimilar ions,
we were able to accurately determine the value of J . Moreover, changing the sign of J
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modifies the appearance of the simulated spectra. Since the experimental spectra are well
resolved, it was possible to determine the sign of J from simulation. The accuracy of
the simulations precludes other contributions to Veff and justifies the use of just isotropic
exchange and magnetic dipolar interactions in expression (2). Negligible admixtures from
various other exchange mechanisms, involving orbital angular momentum operators and giving
other anisotropic terms, are evident from the weakly anisotropic g-factors, relatively close to
the free-spin g-value, so the situation is similar to that of a quenched orbital momentum.

From the experimental value J = −16×10−4 cm−1, it follows that the exchange coupling
between the two Yb3+ ions of a pair is antiferromagnetic but extremely weak. It is of the same
order of magnitude as the value J = −6 × 10−4 cm−1 measured for Gd3+–Gd3+ pairs in
CsCdBr3 [4]. This very small value of J is also evident from the number of resonance lines
observed in the EPR spectra of dissimilar ions. In the weak-exchange limit, the singlet and
triplet states do not constitute pure spin states, so all four states are retained in the calculations
[18]. In other words, singlet–triplet transitions are not forbidden and 4(2I + 1) allowed
 MS = ±1 transitions are expected, as observed experimentally.

The fact that the resulting exchange energy is weak does not necessarily mean that
such contributions are negligible in the ion–ion interaction. J is generally the sum of a
positive, through space, contribution of the ferromagnetic type, JF > 0, and a negative
antiferromagnetic contribution, JAF < 0, due to superexchange: J = JF+JAF . Ferromagnetic
interactions of the order of a cm−1 cannot be definitely excluded since they seem to contribute to
the optical spectra of Nd3+ in YVO4, YLiF4 and possibly YAG matrices [15]. A superexchange
interaction JAF of the same order of magnitude as JF could thus result in a very small effective
exchange energy J . The interpretation of the optical spectra of Yb3+ in CsCdBr3 by Malkin
et al [14], based on a configuration interaction between the ground state 4f13(Yb3+)[4p6(Br−)]6

and excited state 4f14(Yb3+)4p5(Br)[4p6(Br−)]5 configurations, provides an argument in favour
of antiferromagnetic interaction between Yb3+ ions, as these covalency effects are known to
mediate the superexchange interaction [18]. ENDOR spectroscopy should thus be able to give
more information about Br−Yb3+ covalency, and thus about superexchange.

4.2. Electronic ground state

The experimental g-values can be used to determine the structure of the ground-state Kramers
doublet of Yb3+ in CsCdBr3. In cubic symmetry, theg-factor depends on the coordination of the
Yb3+ ion. For sixfold coordination (octahedral site), the predicted ground state is the)6 doublet,
with a theoretical g-value gcub = −2.663, while )7 is the ground-state doublet for twelvefold
coordination with gcub = −3.428. When the distortion from cubic to lower symmetry is
small in comparison with the cubic crystal field, the average g-factor, g̃ = 1

3 (gx + gy + gz),
is expected to be close to gcub [19]. Owing to the basically octahedral coordination of Yb3+

in CsCdBr3, we may use this rule to deduce the signs of g‖ and g⊥, which are not known
from the experimental spectra. We obtain g̃ = −2.580 for g‖, g⊥ < 0 and |g̃| = 0.912 if
g‖ and g⊥ have opposite signs. Comparison with the theoretical value gcub = −2.663 for
octahedral symmetry indicates unambiguously that g‖ and g⊥ are both negative. In a crystal
field of trigonal symmetry, the)6 doublet of pure octahedral symmetry becomes the)4 doublet,
which displays the following structure:

|)4,∓〉 = ±a
∣∣∣∣7

2
,±1

2

〉
± b

∣∣∣∣7

2
,±7

2

〉
∓ c

∣∣∣∣7

2
,∓5

2

〉
. (12)

Here the states are written in {|J,MJ 〉} representation, MJ = J, J − 1, . . . ,−J being
the z-projection of J = −7/2, and the ∓ sign in |)4,∓〉 refers to the ∓1/2 values of the
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single-hole spin of the f 13 configuration. In expression (12) we have neglected admixture of
excited J = 5/2 states, which agrees with the fact that the ratio |g⊥A‖/g‖A⊥| = 0.984 for
171Yb and 0.986 for 173Yb is close to one, as expected for a pure J = 7/2 state [20]. The
parallel and perpendicular components of the g-factor derived from the |)4,∓〉 state are the
following:

g‖ = gJ (−a2 − 7b2 + 5c2) (13a)

and

g⊥ = gJ (+4a2 − 2
√

7bc) (13b)

where gJ = 8/7 is the Landé factor for the 2F7/2 level of Yb3+. Solving equations (13), we
get the following set of values: a2 = 0.045, b2 = 0.5767 and c2 = 0.3783 for the normalized
coefficients which give the experimental g-values. The ground state of Yb3+ in CsCdBr3 is
thus essentially made up of |MJ | = 7/2 and 5/2 states with a very small admixture of the
|MJ | = 1/2 states.

It can be useful to describe the ground state in the usual f-orbital representation. In this
case the wave function given by equation (12) in {|J,MJ 〉} representation is transformed to the
{|L = 3, S = 1

2 ,ML,MS〉} ≡ {|ML,MS〉} representation (ML is the projection of the orbital
angular momentum L on the z-axis) as

|±〉 = p
∣∣∣∣±0,±1

2

〉
+ q

∣∣∣∣±1,∓1

2

〉
+ r

∣∣∣∣∓2,∓1

2

〉
+ s

∣∣∣∣±3,±1

2

〉
+ t

∣∣∣∣∓3,±1

2

〉
(14)

where ML = 0, 1, 2 and 3 represent fσ , fπ , fδ and fφ orbitals, respectively. The coefficients
p, q, r, s and t can be obtained from a, b and c by using the expansions

|J,MJ 〉 =
∑
ML,MS

〈ML,MS |J,MJ 〉|ML,MS〉|MLMS〉

where 〈ML,MS |J,MJ 〉 are the Clebsch–Gordan coefficients [21]. This gives

p2 = 4

7
a2 = 0.0257 q2 = 3

7
a2 = 0.0193 r2 = 6

7
c2 = 0.3243

s2 = b2 = 0.5767 t2 = 1

7
c2 = 0.0540.

(15)

Thus the ground-state orbital is mainly composed of 4fφ (63.1%) and 4fδ (32.4%) orbitals,
with very small contributions from 4fπ and 4fσ orbitals.

5. Conclusions

More than 95% of the Yb3+ ions in CsCdBr3:1.3% Yb sample form weakly antiferro-
magnetically coupled symmetric Yb3+–VCd–Yb3+ pair complexes. The present studies also
show the existence of perturbed Yb3+ sites of lower symmetry in very small proportions. It is
important to note that there are no asymmetric pair complexes of the type Yb3+–Yb3+–VCd.
The hysteresis of near-infrared and cooperative upconversion luminescence as a function of
incident laser intensity has been observed exclusively for excitation of the optical line at about
2 cm−1 above the main absorption line of Yb3+–VCd–Yb3+ centres in 2F7/2(0) →2F5/2(2′)
luminescence excitation spectra [3]. This relatively intense line was previously attributed to
Yb3+–Yb3+–VCd asymmetric pairs [3], which now appears unlikely on the basis of the present
EPR experiments.
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[7] Goldner Ph and Pellé F 1993 J. Lumin. 55 197
[8] Neukum J, Bodenschatz N and Heber J 1994 Phys. Rev. B 50 3536
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